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Abs tract

The problem of selecting the normal population with the largest
populaticn mean vhen the populations have a common known variance is
considered. A two-stage procedure is proposed which guarantees the same
probability requirement using the indifference-zone approach as does the
single~stage procedure of Bechhofer [1954]. The two-~stage procedure has
the highly desirable property that the expected total number of observa-
tions required by the procedure is always less than the total number of
observations required by the corresponding single-stage procedure,

rerardless of the configuration of the population means. The saving in

cxpected tetal number of observations can be substantial, particularly
when the configuration of the population means is favorable to the
experimenter. The saving is accomplished by screening out "non-contending"
populations in the first stage, and concentrating sampling only on
"contending" populations in the cccond stage. The two-stage proced. re

can be regarded as a ccmposiée one which uses a screening subset-type
approach (Gupta [19556], [1965]) in the first stage, and an indifference-
zone approach (Bechhofer [1954]) aprlied to all populations retained in
the selected subset in the second stage. Constants to implement the
procedure for various k and P® are provided, as are calculatiocns

siving the saving in expected total sample size if the two-stage preccedure

is used in place of the correcponding single-stage procedure.
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1. Introduciion and Summary

In many practical situvations a statistician is faced with the problem
of designing an experiment to select one (or more) out of k > 2 possible
competing categories. Typically the categories (populations) are char-
acterized by a real-valued parameter, and the experimenter is interested
in selecting the population having the largest (or smallest) parameter
value. This population is referred to as the "best" population. Thus,
for example, the medical research worker might be studying the resﬁonse of
patients to different types of analgesic drugs in which case his interest
might lie in selecting that drug which produces, on the average, the largest
period of time without pzin, or the agronomist might be conducting field
trials with different varieties of grain in which case his purpose might
be to select that variety which procduces, on the average, the largest yield
per acre.

Procedures for achieving such objectives have received considerable
attention in recent years. Various probability distributions have been
postulated as being appropriate to model these and other real-life problems,
and several statistical formulations of these problems have been proposed,
and associated statistical selection procedures devised. Recent reviews
of the literature with particular reference to the normal means problem
appear in Wetherill and Ofosu [1974) and Bechhofer [1975]. The present
paper continues the study of the normal means problem, and explores in
depth a new approach which has highly desirable properties. This same
approach is also applicable to the normal variances problem.

The statistical formulation of the problem is given in Section 2. In
Section 3 we sketch the relevant history of the normal means problem, and

indicate the virtues and drawbacks of the various procedures which have
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been proposed to deal with the probleﬁ; the reader is thus ensbled to under-
stand the role that our proposed procedure plays. The procedure itself

as well as the design criterion that we adopt are described in Section 4.
The main analytical results are contained in Sections 5 and 6 which deal
with the probebility of a correct selection and the expected total sample
size, respectively; Section 5.2 discusses a key unsolved problem (that of E
determining the so-called least favorable configuration of the population
means) associated with the procedure, while Section 5.3 contains a strategem
which permits us to bypass this difficulty (at the expense of some loss of
efficiency of our procedure). In Section 7 we formulate the problem that

we must solve to obtain design conctants to implement our procedure; tables
of these constants are provided in Section 8. The performance of our two-
stage procedure relative to that of the best competing single stage procedure
is studied in Section 9, and is shown to be highly satisfactory. We con-

clude in Section 10 with suggestions for future research in this area. &

2. Preliminaries

2.1 Assumptions

.

Let 1, (1 £ i 2 k) denote a normal population with unknown mean

My and known variance 02, and let Q = {u = (ul,...,uk)l-—w <y *- (L<izgk):
be the parameter space of the My Denote the ranked values of the My by

and let § ) We assume that the experi-

My St Sy i3 0 Mid
menter has no prior knowledge concerning the pairing of the Hi with the
u[j] (1 <1i,j £k). Let II(_j) denote the populution associated with u[j].
Suppose that ¥ik-r] < Y[k-r+11 © Y[k] for some r (1 < r < k) where we
define u[0] = -»; then any one of the r populations n(k-r+j) (L<jsm

is regarded as '"best."

{
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2.2 Coal and probability requirement

The goal of the experimenter is to select a best population. This

event is referred to as a correct selection (CS). The experimenter restricts

consideration to procedures (P) which guarantee the probability requirement

Pu{CS[P} 2 P% ¥ u € (%) (2.1)

where {8%,P*} 0 < 8% < o, 1/k < P% < 1 are specified prior to the start
of experimentation, and

2(8%) = {u € 2|s 8%}, (2.2)

Kk, k-1 =

We refer to Q(6%) as the preference zone for a CS and to QO(G*) = Q- 0(6%)

as the associated indiffezrence zone. The focrmulation (2.1) is called the

indifference-zcone approach.

3. Background: Single-stage and sequential procedures

The indifference-zone approach as applied to the normal means (common
known variance) problem has received considerable study. Bechhofer [1954]
proposed a single-stage procedure which guarantees (2.1); Hall [1959]
showed that among single-stage procedures this procedure is '"most economical”
and Eaton [1967] proved that it has additional desirable decision theorectic
properties. Bechhofer, Kiefer, and Sobel [1968] (see also, Bechhofer and

Cobel [1954]) proposed an open sequential procedure without elimination

which guarantees (2.1). Paulson [1964] proposed a closed sequential

procedure with permanent elimination which also guarantees (2.1); Fabian

[1974a] (see also, Fabian [1974b) and Lawing and David [1966]) showed how

Paulson's procedure could be modified to improve its performance characteristics.

ey
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The single-stage procedure (Pl) of Bechhofer requires a common
sample size n per population which is chosen in such a way that (2.1)
is guaranteed even when Yoy T Yrid = 6% (1 <1i<k-1), this being the

so-called least favorable (LF) configuration of the population means.

However, the procedure is conservative in that if, unknown to tlie experi-

menter, u[k] - u[i] > 8% (1 <

i £ k-1) with strict inequality for at

least one i-value--in particular if - >> 8%, then
(k]

H[k-1]
Pu[CSIPl} > P% for the actual u € 2(8*) which the experimenter has

encountered. If this is the situation he may have greatly overprotected

himself, the overprotection having been purchased by the use of a iuch

larger n-value than would have been necessary had the true p-values been
known.

Unlike single-stage procedures, multistage or sequential procedures
provide information concerning the true but unknown u-values as sampling

proceeds.

The sequential procedure (PS ) of Bechhofer, Kiefer, and Sobel takes
1
a single vector of observations at each stage of experimentation. Here the

number of stages (Ns ) to terminate experimentation is an unbounded r.v.
¢

(For P a vector consists of one observation from each of the k popu-

-

lations.) In addition to guarantezing (2.1) whepn the population means are
in the LF-configuration, it also reacts to favorable configurations of the
population mecans and thereby tends to terminate experimentation early

S }-values which are smaller than n (c.f., B-K-S

5 4
[1968], Section 12.8.1). (Throughout this paper n will denote the single-

resulting in EEFNSl[P

stage sample size for Pl.) However, if P® is sufficiently close to
unity and if Mk " u[k-l] < §*--in particular, if M) = Mrye then

Eu{NS IPS } >n for the actual u € 90(6*) which the experimenter has
= "1 "1

i
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enccuntered. However, PS does have a practical disadvantage: It is
1

open-ended, i.e., although N is finite w.p. 1, it is unbounded; this

51

latter fact may inhibit or prevent the use of the procedure in certain
cituations.

The sequential procedure (PS ) of Paulson which takes a single vector
2
of observations at each stage of experimentation, and for which the number

of stages (NS ) to terminate experimentation is a bounded r.v. (< M),

2
is an adaptive procedure. (For P, a vector consists of one observation
"2
from each of the kj populations still retained 'in contention" by the

procedure at stage i (1 <j <M, k= k; 2 kg 2 cin 2 ky 2 2), those
not retained at stage J being permanently climinated; here the kj

(2 £ 3 <M) are r.v.'s.) In addition to guaranteeing (2.1) when the
population means are in the LF-configuration, it also reacts to favorable
configurations of the population means, eliminating from further sampling
populations which are indicated as not being in ccntention, and in general
terminating experimentation early resulting in Eu{NSQfPS2}-values which
are less than n. (See Ramberg [1966].) Of considerable interest is the
fact that if Pryy = u[k] and P* is close to unity, then

1 " k - 3 .
EEfNSZ|P82} < EEftS IPS,} for the actual u € ,(6%) which the experimenter

il 1
has encountecred. The quantity Eu{TS {PS }, where T = total number of
= 2 2

observations to terminate experimentation, behaves similarly w.r.t.

E{T. |P. }. Since N, <M we have E {N_. |P. } <M and E {T_. |P. } < kN
L 5" s 55 us, 8, i R
for all u € Q; the bound M is a function of k, {§%,P*¥} and also of

a design parameter A (0 < X < 6%/2) which is fixed by the experimenter
before the start of experimentation.

Even though PS and PS have certain highly desirable properties
1 2

relative to Pl’ both being adaptive and therefore being able to capitalize

ey, Do 2 g T sl o




on favorable counfigurations of the population means, both have the drawback
that they may require many stages to terminate experimentation. Such
procedures are often very costly to implement, and in some experimental
situations may be cempletely impractical, e.g., in agriculture where only
one stage, i.e., vector of observations, can be obtained each growing
season, the number of stages (years) to terminate experimentation would be
prohibitively large.

Thus, in this present paper we study a two-stage procedure which takes
a fixed number of vectors of observotions at each stage of experimentation.
The procedure guarantees (2.1) when the population means are in the LF-
configuration. It.is adeptive, eliminatirg from further sampling in the
second stage populations which are indicated as not being in contention
after the first stage, and in general terminating experimentation after
the first stage if the configuration of the population means is very favor-
able, e.g., % “{k-l] >> 6%. In addition this procedure is designed
to be minimax within a certain class of two-stage procedures.

)

4. A twc-stage proccdure (P2

\'2 propose a two-stage procedure P2 = P2(nl,n2,h) which depends on

and a real conctant h > 0 which are deter-

non-negative integers n 9 >

1’7

mined prior to the start of experimentation. The constants (nl,n2,h)

depend on k and {8%,P*}, and are chosen so that P2 guarantees (2.1)

and possesses a certain minimax property.

Procedure PZ:

1. In the first stage take n

K

independent observations i

1

(1 €3 é‘“l) from Hi (1 £i<k), and compute the k

== ==

ekt dacie
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sample meaus X, © = ) X.:'/n, (1< i<k). Let
S 521 13 1 = 7 =

X = max X. '. Determine the subset I of (4.1a)
(k] i

{1,2,...,k} where I = {i|?§l) ::ﬁéi%

let HI dencte the associated subset of {ngH

a) If HI congists of one population, stop sampling

- h}, and

2,...,Hk}.

and assert that the population associated with
hi}
X is best.

(k1

b) If HI consists of more than one population

proceed to the second stage.
2. In the second stage take n, additional independent
S=Rd )

2
observations ng) (1 <j <n,) from each population

2

an I and compute the cumulative sample means (4.1b)

n
1 2 ,(2) :
== ) ) n S 58
= (] X(%/ v ] xij )/(nl+n ) for i€ I. Assert
i=1 i=1 -
that the population asscciated with max X, is best.
ier

2

Remark 4.1: This procedure had been proposed previously by Cohen [1959]
and Alam [1970]. Due to analytical and computational difficulties, most

of their work was limited to the special case k = 2.

Remark 4.2: If h =0 (h = ») the two-stage procedure P2 reduces to

Bcchhofer's [1954] single-stage procedure Pl with single-stage sample size

n = n, (nl+n2) per population. Also, the rule determining I  in (4.la)
is of the type proposed by Gupta [1956,1965] in his subset selection

procedure.

There are an infinite number of combinations of (nl,nz,h) which for

™ 4T

any k and {é%,P*} will exactly guarantee (2.1), and different design

criteria lead to different choices. In the next sections we consider two

AW

of these criteria.

. e
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Let S' denote the cardinality of the set I in (4.la), and let

0 if s' =1
S = (4.2)
SEIE St

Then the total sample size required by Pz(n h) is

l’n29

T = kn, + Sn,. (4.3)

Let Eu{Tle} denote the expected total sample size for P2(nl,n2,h) under u.

4.1 R-minimax design criterion

The design criterion proposed by Alam [1970] is the following: For

given k and specified {8%,P*} choose (nl,nQ,h) to

minimize Sup E {T|P2}
HER(S%)

subject to Inf P {csle} > P, (4.4)
uea(s*)

whare n,,n

1°h, are non-negative integers and h > 0.

We denote by (n hIRE) the exact solution to (4.4), and by pZ(RE) the

R L
procedure using this solution. The R-minimax criterion in which minimization
takes place over a restricted portion of Q insures that Eu{Tlpz(RE)} < kn
v u € 2(8%) for any given k and specified {&§%,P*}. Howe;;r, it ignores

what can happen to Eu{T|P2(RE)} if, unknown to the experimenter,

. % 5 .. -
ue 90(6 ). Indeed, for 17 = Mok it is possible to have
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Let S' denote the cardinality of the set I in (4.la), and let

e = (4.2)
St HE RS

Then the total sample size required by PQ(nl,n2,h) is
T = knl + Sn2. (4.3)

Let EV{TIPz} denote the expected total sample size for Pz(nl,nQ,h) under .

4.1 R-minimax design criterion

The design criterion proposed by Alam [1970] is the following: For

given k and specified {68%,P*} choose (nl,n2,h) to

minimize Sup E {T|P2}
E@'g}((s*) }_‘_

subject to  Inf P {CS[P2} > P%, (4.4)
E\eg(s-.’:) u

where n,,n  are non-negative integers and h > 0.

L2

We denote by (nl’n2’h!RE) the exact solution to (4.4), and by P2(RE) the
procedure using this solution. The R-minimax criterion in which minimization
takes place over a restricted portion of Q insures that Eu{T|P2(RE)} < kn
V u € Q(8*%) for any given k and specified {&%,P*}. Howe;;r, it ignores
what can happen to Eu{T|P2(RE)} if, unknown to the experimenter,

* = s s 3
u € 2,(8%). Indeed, for M[1] = ¥[ky 1t is possible to have
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E“{TIPQ(RE)} >> kn for P# sufficiently close to unity (as happens when
Eu{T) of the Wald-Girshick SPRT is compared to the total single-stage
s;ﬁple size which guarantees the same probability requirement. See
Bechholer [1960] and B-K-S [1968]). Section 12.8.1). It is to guard against
this latter undesirable possibility that we propose the design criterion

dascribed below.

4.2 U-minimaxz design criterion

Our design criterion is the following: For given k and specified

{&% pP*} choose (nl,nz,h) to

minimize Sup Ep{T‘P2}
PO

subject to Inf P {csiPQ} > P, (4.5)
ueR(8%) S !

where n..,n, are non-negative integers and h > O.

12

We denote by (nl,n2,hlUE) the exact solution to (4.5) and by P2(UE) 1

the procedure using this solution. Our U-minimax criterion (4.5) in which

minimization takes place over the unrestricted parameter space £ insures |

that Eu{Tfpz(UE)} <kn Vyu €@ for any given k and specified {§%,P%}; ;

in this sense P2(UE) is uniformly (in ) superior to Pl.

As the first step in determining (nl,n2,h|RE) or (nl,nﬂ,h[UE) we

find an exact analytical expression for Pu{CS|P2}.

I e




5. Probability of a correct selection for P2

5.1 General expression for Pu{CSIle

Our result concerning a general expression for Pu{CS|P2} is summarized

in the following theorem:

Iégorem 5.1: For any u € & we have

ngcsle} =
x+& ./n_ /o
o pw ki L S .
g J J 1 j aly + teaiipialt 2 & % (5 2 5000)
sfS J-» /-» ig¢s x+(6k.-h)/5'/o e
1 1
x NI o[x + (Gk.-h)/ﬁi/o]db(y)d¢(x) (5.1)
i¢s -

-
x-68 .vn. /o o

kil 2 ]“ o ki L J
+
391 568, 1o Voo | Jae(a, im0 /0 y+(xw) (p/) 26, s (m/0) % /o

x-6../ﬁi/o \
1 E 4 1/2 1/2
[v + (u-2)(p/q) + Gki(m/q) /c1de(z)
i€s x—(dij+h)¢ﬁi/0

x (T o[x - (Gij+h)/5i/o])d¢(v)d¢(u) de(y)de(x),
i¢s

where ¢(:) is the standard univariate normal cdf, and

S = the collection of 2ll subsets of {1,2,...,k-1},

Sj= the collection of all subsets of {1,2,...,j-1,j+1,...,k-1},

m=n, 40, P= nllm, q = n2/m.
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) 1) oy . = T 3
Proof: Let X(i) 2 x(i)a/nl and X(i) ) Z X /m where x(i)a
R =1 j=1 a=1
is the ath observation in the jth stage from n,.,., all X(?)

= —— (1) (i)a

(l2igk,15azsn

50 j = 1,2) being independent. Then

X = [k]’ X1) = *pa -

(1)

1) 32 _pvies; X >Xgy Vi €s)
(1)

(k]

(1) . 1) 1) (1)
; Py_{"(" Xre3e L) =%y - B (5.2)

i(l) ={1)

s oo ) —(l) 5 '
(1) -“[k] h ¥Yies: X < -hVi¢g¢gs;

Ax)

Xy > X5y Xy > Xy Vi €5

Danoting [(Yzi; - u[i])/EI/o, (?(i) - u[i])/ﬁ7o] by [X;,Y,], we see

that [xi’Yi] has a standard bivariate normal distribution with correlation

coefficient = ¥p (1 < i < k). In what follows we shall use the equality

o Tablod = [2 0 -lu-z__l,Jda<z> (5.9)
(1~p7)

where ¢2[~,-lp] is the standard bivariate normal cdf with correlation

coefficient p (-1 <p < 1).

We first consider

AW e T
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Pg{xk + 6k1“5;7° > X > X+ (eki-h)Jﬁl/o Yies,
X+ (aki~h)¢EIVo >X, Vies,

Y, + Gki/rﬁ/o > Y, Vies})

[ neotus sz, v e o ol

irs

- oz[u + (6ki-h)/517o, v+ Gki/E/olfsl}

x 1 ofu+ (Gki-h)/517o]d02[u,v|¢53 (5.4)
i¢s
u+s ./n_/Jo
o ki 1
= J J“ n ofv//q - z(p/q)l/2 + Gki(m/q)l/2/0]d0(z)
o J_w jes u+(6ki-h)¢5170

x igs oflu + (ski-h)vEIVo]do2[u,v|JE]

& x+6k.»’nl/c

Z i 1/2 1/2

= I oy + (x-2)(p/qQ)™"" + & .(m/q)™" "/01dd(z)
-o {0 iCsi\ x+(6ki-h)an/c -

x igs olx + (ski-h)fﬁzyc]d¢(y)d¢(x>.

The next to last equality was obtained using (5.3), and the last was obtained

2
by making the transformation x = u, y = (v-u/F)/(l-p)l/‘.

We next consider
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B, 3 ™ P__{x. E 5kj/rTl'/o > % 2%, ~ (ékjm)/rT,'/o,

X5 - ‘Sij‘/h?" > Xy 2 Xy - (Gij+h)\/fl—£/o Vies:

X5 - (sijm)/rK/o >X, Vifs

Y +5kj/ﬁ/c>yj, Y +6ki/fﬁ/c>Yi ¥1i ¢ s)

k (5.5)

feo]

X—ij/E170

= n {¢,[x-6,../n /o, w+ & .Vn/o|Vp]
I-” J-w[:Jx-(dkj+h)/EI7G It-ékj/ﬁyo<;(s ‘ &y A ki

= ¢2{x - (Gij+h)/ﬁz/o, w o+ Gki/a/ol/S]}

x T olx - (8 .+h)/r?l‘/c}>d¢2(u,w|/Eﬂdo?_(x,tl/S).

ifs 1

Proceeding as with As’ we apply (5.3) to (5.5) and then make the transforma-

/2 /2

tions x = x, y = (t-xfﬁ)/(l—p)l and u=u, Vv = (w—uJS)/(l—p)l

Substituting the resulting expression and (5.4) in (5.2) we obtain (5.1).

Corcllary 5.1: Let u(8) denote any u € @ such that 1) = u[k—l] s u[k] -8

where & > 0. (u(8) is known as a slippage configuration.) Then we have

x+8vn_ /o
it i 1 1/2 1/2
P (6){CS|P2} = I ofy + (x-2)(p/q)”" ° + &(m/q)”" “/olde(z)
¥ - Joo N x4 (6-n)VE /o
k-1
+ ofx + (G-h)/5170€} de(y)das(x)
(5.6) .i
s x-s/ﬁzla &
+ (k-1) J [ J
co S U(smmvaso dyetx-ad(ora)t 2-s(ma %o
X
{[ olv + (u-z)(p/)*"? + 8(m/)*?/51d0(2)
x-h/EIVG

k-2
+ d(x - m’:f/a)} do(v)do(u)‘] ds(y)de(x).

ot




Proof: The prcof is straightforward.

Remark 5.1: For k = 2, (5.6) simplifies considerably: the resulting expres-

sion is given by Alam [1970] as his equation (3.1). Alam also gives an

expression for Pu(é){CS|P°} (see hiz second equation (3.24)); however, we were

not able to verify his expression.

5.2 LF-configuration for P2

In order to solve (4.4) or (%#.5) it first is rnecessary to determine the

LF-configuration of the My for P2, i.e., to determine any ¥y € Q&)

¥
such that

P fes|P.} = mE P {es]P.). (5.7)
By 2 uen(esy L2

As a first step toward determining ¥, we now study the monotonicity of

Pu{CS|P2} w.r.t. the up.q (1 <1 %5k).

Lemma 5.1: For fixed k and u[i] (1 £1i<k-1) and fixed (nl,n2,h),

Pu{CSIPQ} is non-decreasing in Mpy 4

Proof: From (5.4) and (5.5) we have
PHfCS|P2} = PEfstg fix + GkiJEIYG > X, > X+ (Gki-h)/ﬁzyo vies,

X, * (aki-h)fxq/a >X, Vigs)

le:; (X - 8y 5/n/0 > Xy > Xy - (8, 4+0)¥n, /o, (5.8)
- - T . N T
X; Gij/ﬁzyo > X, > Xj \Gij+h)¢5170 vies, 3¢}

Xy - (5ij+h)/5;70 >X, Vigs)ndy + ckiJEVo >Y, Viesih

AWAY P T
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where A(u) 1is in the sigma algebra generated by the r.v.'s [xi’Yi] (1<izgk).
: R ' y B : z,
Now consider a vector u (ul,...,uk) where i) u[i] (1 <£1i<k-1)
'
> . - 1 2

and uck] u[k] Then P}L,{CS‘Pz} P{A(E )} We shall show that

A(p') D A(p). Ve denote the value taken on by a r.v. X at a sample point w
2). let 8!, = pr.. - u 1,3 '

by X(w). Also le Gij Mri1 T M43 (1 <i,j <k). Then § . > 8s

* ' - s o s
(1 £1i<k-1) and sij. = Gij (1 <i,j < k-1).

Fix w € A(y) which corresponds to some set s ¢ S.

Case 1: Suppose that w belongs to the following event:

{Xk(m) + cki/ﬁl“/c > Xi(w) > X (@) + (aki-h)fn“l'/o Vies,

Xk(m) + (Gki-h)/EIYG > Xi(w) ¥YiEksl
Then it also belongs to the event

{x (w) + slli/ﬁ’l‘/o > X (w) > X (0) + (s}'d-h)/n‘l‘/a vies',

X (@) + (& .-h)Va /o > X (0) ¥V ifs')

for some set s' € S, s' Cs.

Case 2: Suppose that s is non-empty and for some j € s, w belongs to the

following event:

{Xj(w) - skjfnz/o > X, (0) > Xj(w) - (akj+h)/z§/o. (5.9)
Xj(w) - sij@/o > Xi(m) > Xj(m) - (aijﬂ;-,)/x'{l'/o vies,i#3;

xj(m - (Gij-fh)/_nI/O > xi(m Vitgs).




Now suppoce that Gij in (5.9) are replaced by Gii and that
: .
Xj(w) - dijEIYO > X (w) is still satisfied. Then (5.9) holds with 845
replaced by Gij (L <i,j <k) and s = s'. On the other hand, if
Xj(w) - 6;5/5170 > X, (w) is violated, then w must belong to the following

event:
{x, () + s,;]./al‘/o > X, (w) > X, () + (8, .-R)/n /o V i€s',
Xk(w) + (Géi-h)VEIYG > xi(m) viés)

for some s' Cs.

From Cases 1 and 2 we Lave s' Cs, and hence we obtain

-
™
%]
Nd

{Yk(w) + aki/HIYO > Yi(w) v i

[
-
(%]
vt

= {Yk(w) + 6;i¢517° > Yi(w) v

v

Therefore w € A(u) => w ¢ A(p') and A(p) c A(p'). Hence P{A(y')} > P{A(n)}

and Pu,{Csle} > Pu{csle} which completes the proof of the lemma.

Corollary 5.2: Pgﬂs){csle} is non-decreasing in 6 2 0 when wr 4 = W 4
js fixed. In particular, for k = 2 Pu{CS|P2} achieves its infimum over

Q(6*), i.e., satisfies (5.7), at any u satisfying M2l T Mg G &%,

Proof: Since P2 is translation invariant, Pu{CS|P2} depends on u only

through the §, . (1 £ i < k-1). The result then follows from Lemma 5.1.

Remark 5.2: The method of proof used for Lemma 5.1 does not carry over to
prove our intuitive conjecture that Pu{CSIP2] is non-increasing in each MLi]

(i # k) when the remaining u-values remain fixed; nor have we been successful

NEWE
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in finding alternative methods of proof. However, Monte Carlo samplings that
we have conducted have supported this conjecture. Nonetheless, the monotonicity
of Pu{CS|P2} in the Gki (L <i<k-1) for k > 2 still remains an open

question. We believe that the following conjecture made by Alam [1970] is correct:

Conjecture 5.1: For fixed k > 2 and (nl,n2,h), the slippage configuration

u(8*) is a LF-configuration for PQ.

5.3 Lower bound for Pu{CS|P2}

In this section we deri;; a lcwer bound for Pu{CSIP2}. This lcwer bound
will prove to be particularly useful for k > 2 si;;e we will prove that it
achieves its infimum over (é*) at u(é8%), the conjectured LF-configuration
for P_; this result will permit us to construct a conservative 2-stage
procedure (for k > 2) which will guarantee (2.1). The lower bound involves

integrals the values of which can be easily calculated on a digital computer.
Theorem 5.2: For any p € @ we have

k-1
P{CSIP} r<n oLx + (8, +h)/—/oJ+ R

ofx + 6 /-/o}dé(x) =l (5.10)
i=1l

Proof:

1- P}l_{CS]P2} = P&{Incorrect select:.on]?z}

<P {Xii; < fﬁl; h for some i # k} + Pgﬁikk) < i}i) for some i # k}
g o1y, okd) : et
=1-P {x(k) Xijy ~h Vi £k} +1 PE{X(k) 2 X1y Vi#kl

o k=1 o k-1
2-J n o[x + (c +h)/—/o]d@(x)-[ n o[x+cki/€ﬂ/o]d0(x).

-o i=] - j=]
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A rearrangement of the terms gives the desired lower bound.

Corollary 5.3: For all u € Q(8%) we have

P (cs|P,} 2 J i+ (6%+h)/0 /0] + 0 [x + 6%/m/0]}de(x) - 1. (5.11)

Proof: The proof follows immediately on noting that the r.h.s. of (5.10) is

non-decreasing ineach ¢ for 1 <1i 2z k-1.

ki

Corollary 5.4: Since the r.h.s. of (5.11) is strictly increzsing in each of

n,, m, h, and + 1 as n; oras n,

be guaranteed if all are chosen sufficiently large.

and h + =, we see that (2.1) can |

As a consequence of Corollary 5.4 it is clear that a conservative two-stage
procedure which guarantess (2.1) and which employs either the R-minimax or the
U-minimax design criterion can be constructed and implemented using the lower
bound given by the r.h.s. of (5.11). We shall denote such procedures which
employ these criteria by PZ(RC) and P2(UC), respectively. P2(RC) is
conservative relative to P2(RE) (as is P2(UC) relative to P2(UE)) since
it overprotects the experimenter with respect to (2.1), this overprotection being
purchased at the expense of an increase in Eu{T|P2(RC)} and EEFT‘P2(UC)} at

u(s*) and u(0), respectively. We consider P2(RC) and PQ(UF) in detail

in Sections 7-9.

Remark §.3: If we let h + « on the r.h.s. of (5.10) we obtain

w K-l
J n ofx + 6k1¢570]d¢(x) which is an expression for Pu{CS|Pl} where Pl
-® j=]1 =

uses a common single-stage sample size m per population. Thus Pl is a

special case of any P2(‘) based on the conservative lower bound.
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6. Expected total sample size for P2

In order to solve either (4.4) cr (4.5) we first find an analytical
expression for Eu{TlPQ}; this is done in Section 6.1. Then it is necessary
to determine Sup EU{TIPG} for u € Q(6*) and for y € @ for (4.4) and (4.5),

respectively; the sets of p-values at which these suprema occur arc found in

Section 6.2.

6.1 General exprecsion for Eu{Tqu}
<

Our result concerning a general expression for Eu{TIPQ} is summarized

in the following theorem:

Theorem 6.1: For any p € @ we have

BulTiFg) = (6.1)
k @ k k
kn) +n, .Z J {:.? olx + (eij+h)/5170] - ? olx + (éij-h)/EIYG] do(x).
i=1 4= j=1 j=1
j#i j#i
Proof:
| o=
EBFTIP2} = kn) + n2BEfS|P2}
= ko, * n2[Eu{S'|P2} - PE{S' = 1|P,1]
= (6.2)
B ey o
=k, +n, izl P&{X(i) 2%y - b vV § # i}

Theorem 6.1 follows immediately.

-




6.2 The supremum of Eu{TIPO}
Our results concerning the supremum of EU{T]P2} for u € (s%) and

1 u € @ ave sunmarized in a) and b) of the following thecrem.

Theorem 6.2: For fixed k and (nl,n2,h) we have that

a) Sup Eu{TIPQ} = kn

nea(s®) L *

. nz[] {07 0x + (s%h)/A /0] - o T H0x + (6%-h)ViT/0]}d0(x)

-0

@ (6.2)
+ (k-1) J (6 2[x + Wa /63:0x - (6%-h)vn /o]

- ¢k'2[x - h/EIYoJ¢[x - (6*+h)¢5170]}d¢(x{}

which occurs when ¥E13 = Mk-1] = By = 8%,

b) Sup Eu{T|P2} = kn, + kn, fim (o x + h/n /6] - g hv/n /o]}de(x) (6.4)

l‘.f»

which occurs when ¥r1g = Uiy
Ve shall prove part b) of Theorem 6.2; the proof of part a) follows along

the same lines.

Proof: Gupta [1905] has shown that E“{S‘iPz} achieves its supremum for
u € @ when u[l] = u[k]. It only remains to show that PEFS' = 1|P2} achieves
its infimum when 13 S kg We use the method of Gupta [1965].

Set Mppp = »er S¥py T M < b4l for some b (1 <b < k-1) and

¢ = - . £3
define 6, Mpig - ¥ for b+l £ i € k. Define

HIALL et X
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Q(u) = P (38" = 1P, My T e T Mgy T W)

© k
= b [ ob'l[x - h/le‘/oJ M o[x - (8.+h)vh_ /o1de(x)
o bl 1

-C0 ]'°b+l

B k
+ ) I ¢’[x + (8,-h)vn /o] I olx + (6, :-h)¥n, /01de(x).

i=btl J-w * j=b+l 1]
j#L

After differentiating w.r.t. u, and then interchanging the order of inte-

gration and summation in the first +erm, and making appropriate substitutions,

we obtain
b, ke s g
g_Q_ o -;—l_ X I ob-l[x + (Gi_h)/nl/o] i ¢[X + (61.'}1) nl/O]
o i=h+l /- j=b+l .
74 (6.5)

(elx - h/5270]¢[x + sivﬁIVGJ - ofx + (Gi-h)/51701¢(x)}dx £ 0.

The last inequality is obtained by noting that the quantity inside { } in
(6.5) is non-positive for every x and i for b+l < i < k due to the
monotone likelihvod ratio property of ¢. It follows that Q is non-increacing
in p and is in fact strictly decreasing if h,nl > 0. Thus subject to

13 = e = Hrpye we see that Pu{S' = 1|P2} is minimized by increasing

the common value yu until y = “[;;l]' Since this is true for each b < k-1,
it follows that P {S' = 1|P,} is minimized and hence EEfTIP2} is maximized
over Q when ¥r1] = Mik]®

Using the results of Theorem 5.1 and Lemma 5.1 along with Theorem 6.2 we can

now formulate our optimization problems (4.4) and (4.5) precisely.

b (A P b TR
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7. Optimization problems yielding congervative solutions

In this section we consider the cptimization prcblems (4.4) and (4.5)
which ene nust solve in order to determine (nl,nz,h!RE) and (nl,n?,hlUE)
which are necessary to implement P2(Rr) and P2(UE)' As noted in Section 5.2,
we have not been successful in determining the LF-configuration of th2 ML)

(1 <1ig k), except for k = 2. Thus for k > 2 we replace the exact
probability Inf P {CSlP } by the conservative lower bound on that

per(sx) L2
probability given by the r.h.s. of (5.11), and consider the following cptimiza-

tion problems:

7.1 Discrete cptimization problems

7.1.1 R-minimax design criterion

For given k and specified {6%,P%} choose (nl,nz,h) to f

minimize Sup E {T|P,}
pea(s®) b 4
(7.1)

{-]

subject to I {@k-l[x + (6*+h)/517o] + o5 Lk + §%/T /01}do(x) - 1> P,

-0

where nl,n2 are non-negative integers and h > 0.

In (7.1), Sup E {T|P2} is given by (6.3). We denote by (nl,n2,h|Rc)
uea(s®) &

the solution to (7.1), and regard it as a conservative solution to (4.4); we

denote the corresponding procedure by PQ(RC).

7.1.2 U-minimax design criterion

For given k and specified {&8%,P*} choose (nl,n2,h) to

-~

B SR
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minimize Sup E {TiPz}

nea &

(7.2)

subject to I {¢k—l[x + (6*+h)¢5§70] + ¢k-l[x + 6%/m /o]}de(x) - 1 > P¥,
-]

where n,,n

1 are non-negative integers and h > 0.

2

In (7.2), Sup E {T|P } is given by (6.4). We denote by (n.,n ,h|U ) the
et kel R sl -

solution to {(7.2), and regard it as a conservative solution to (4.5); we denote

the corresponding procedure by P2(UC;'

7.2 Continuous cptimization problems

The problems (7.1) and (7.2) are extremely complicated integer programming
problems with non-linear constraints and objective functions. Although these
problems can be solved in principle by enumeration, the search is likely to

be a costly one becauze of the numerical evaluation of the integrals involved.

Additionally, since the solution depends on &%, a separate solution is

required not only for each k and DP®-value, but also for each &%. Hence

we shall remove the restriction that nl,n2 must be integers; we reparametrize
3

the problem and regard the new design constants (which are functions of n)s
g n2, and h) as continqug. We use this continuous version as a large sample

approximation to the discrete version.

We define the new design constants

e, * c*-’n‘l'/a, c, = 6*@/0, d = h/rT,_‘/c. (7.3)

We note that the exact expression for Pu{CSlP2} and the conservative lower

h), 6%, o only through

bound on it, as well as Eu{T'P2} depend on (nl,n2,

WAL et o

(cl,cz,d) and Gkilé* (121 <k-1).




Thus, for example, for given k and specified {6%,P] we can approxi-
mate the design constants (nl,nz,hluc) necessary to implement P2(UC) by

solving the continuous optimization problem:

minimize kci + kcg J {¢k_l(x+d) - ¢k-l(x-d)}d¢(x)
o (7.4)

00 -
subject to J {0k_l(x+c1+d) + @K-l(x + (ci+c§)l/2
L]

Y}de(x) - 1 > P*

where ¢ 9? da > 0.

L

We denote by (El,ao,diUc) the scluticn to (7.4), and use the approximate

design constants

c,o\2 c.o\2 n
& - 1 P o __2_ - o dﬁ}-
n, = (5"" ) + 11 n, = o ) +1], h -—g; (7.5)

where [z] denotes the greatest integer < z, to implement P2(Uc)'
Similarly, for k = 2 and specified {6%,P*} we can approximate the
design constants <nl’n2‘h|UE) necessary to implement P2(UE) by solving

the continuous optimization problem:

* 2c§{¢<d//2‘) - 0(=d/V3)}

Sl 2
minimize 2cl

(e +a)/V2 K9
o [-xv/p/q + V(ci+c§)/2q]d0(x)

subject to O[(cl-d)/“5j + p%,

ftv

(cl-d)lff

where cl, s d > 0.

-~

We denote the solution by (El,éz,alug). Analogous expressions can be written

B S
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in order to approximate the design constants (n thC) for k 2 2, and

lsn2’
(nl,n2,n|RE) for k = 2.

3. Constants to implement P2

8.1 Constants to implement P2(UE) and PQ(RE) for k = 2

Table 1 contains constants necessary to approximate (nl,n2,h|U£) and
(nl,n2,h|RE) for k = 2 and selected P¥%; although we are primarily
interested in the ones associated with P2(UE), we have computed those
associated with P,(R.) for comparative purposes. (See Section 9.} The
cemputations for P2(UE) are the solutions of (7.5), while those for P2(RE)
are the solutions of the analogous problem wherein Sup EH}TlPQ} over q(§%)
is minimized. The constants given here for P2(UB) and PQ(RB) are exact

since the LF-configuration for PEfCS} is known for k = 2.

8.2 Constants to implement P.(U.) for k > 3
< C e e

Table 2 contains constants necessary to approximate (nl,n2,h{UC) for
k = 3,4,5,10,15,25 and selected P¥%; the computations for P2(UC) are the
solution of (7.4). The constants given here for P2(UC) are conservative
since the LF-configuration for Pu{‘SlPQ} is unknown for k > 3. (We have

not attempted to compute the constants (61,82,a|UE) which would be used

if the conjectured LF-configuration for Pu{CS|P°} were indeed Mkl " u[i]= &®

(L 21i<k-1) for k > 3; such computations, although of interest, would
be difficult to carry out because it would be necessary to evaluate numeri-
cally very complicated iterated integrals.)

All of the computations for Tables 1 and 2 (as well as those described in
Section 9) were carried out in double precision arithmetic on either Cornell's

IDM 360/65 and IEM 370/168 or on Northwestern'’s CDC €400. To solve the
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Constants to implement

Table 1

PQ(UE) and P2(RE) for k = 2

(8,.8,.d]uy) (&,.¢,,dIR)
p*
¢ <, d ¢ c, d
0.9989 | 4.5397 2.9087 0.97215 | 3.4801 4.4120 1.9162
0.9995 | 3.9742 2.6708 0.95623 | 3.1239 3.9034 1.6992
0.999 3.7062 2.5712 0.94824 | 2.9566 3.65606 1.5026
0.99 2.71893 2.0906 0.91913 | 2.2931 2.7371 1.2803
0.95 1.8621 1.6155 0.83072 ) 1.6583 1.9347 1.0574
0.90 1.4270 1.3132 0.85278 | 1.322y 1.4996 0.92974
0.85 1.1391 1.0930 0.84174 | 1.0789 1.1e80 0.90951
0.80 0.91577 | 0.90970 | 0.82702 | 0.88255 | 0.96174 | 0.87132
0.75 0.72801 | 0.74161 | 0.81999 | 0.71036 | 0.77072 | 0.84413
0.70 0.56240 | 0.58661 | 0.80783 | 0.55468 | 0.59769 | 0.82505
0.65 0.41227 | 0.43299 | 0.80202 | 0.40845 { 0.43957 | 0.81002
0.60 0.26982 | 0.28775 | 0.79714% | 0.26907 | 0.28914 } 0.79865
0.55 0.13374 | 0.14322 | 0.79140 { 0.13378 | 0.14318 | 0.79053
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Table 2

Constants to implement PZ(UC) for k > 8

(cl,c2,d|UC)
k P
cl c2 d
0.99 | 2.9326 2.4083 1.2458
3 0.95 | 2.0893 1.8974 1.6303
0.90 | 1.6699 1.5491 2.1814
0.75 ! 1.0492 0.97980 3.9335
: 0.99 | 3.0432 2.5805 1.2596
. 0.95 | 2.2400 2.1106 1.4806
0.90 | 1.8262 1.7859 1.8245
L 0.75 | 1.2203 1.1712 3.2365
0.93 | 3.1035 2.7301 1.2712
0.95 | 2.3184 2.2622 | 1.u604 ,
5 0.90 | 1.9209 1.9786 1.6403 i
0.75 | 1.3191 1.3304 2.7280 :
0.60 | 0.96047 | 0.91856 4.3038
r 0.99 | 3.2364 3.1620 1.3453
* 0.95 | 2.509u 2.7750 1.3529
? 10 0.90 | 2.1466 2.5349 1.3830
t 0.75 | 1.5712 1.9725 1.6980
: 0.60 | 1.22u8 1.3491 2.7648
| 0.45 | 0.95453 | 0.92770 4.3433
| 0.99 | 3.2983 3.3883 1.3999
| 0.95 | 2.5886 3.0259 197171
15 0.90 | 2.23u4 2.8212 1.3676
0.75 | 1.6899 2.4268 1.3974
0.60 | 1.3404 1.7600 2.0210
0.45 | 1.0897 | 1.1270 3.5471
0.99 | 3.3634 3.6572 1.4783
0.95 | 2.66u46 3.3204 1.4401
25 0.90 | 2.3270 3.1393 1.3972
0.75 | 1.8000 2.8539 1.3234
0.60 | 1.4909 2.7798 1.1769
0.45 | 1.3026 3.1516 | 0.76886
|

7
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continuous optimization problems, first a '"reasonably good" discrete optimal
solution was found by a search method. This solution was used as an initial
guess in the computer program using a modified version of the steepest descent
method to solve the ccontinuous non-linear programming problem; Algorithm 304
of Hill and Joyce [1967] was used to evaluate &(°); the integrals were
evaluated using the Romberg method of integration. We do not claim that

our solutions represent the absolute optima, but they are reasonably close to
the optima. (The Eu{T|P2(UC)}-ourfaCe is very flat in the neighborhood of
the maximum for P#* : 1/k since P2(Uc) > Pl.) The tabulated values should

be correct to the number of significant figures given.

9. The performence of P2 relative to Pl

As a measure of the efficiency of Pl (Bechhofer [1954]) relative to
that of P2 when both guarantee the same probability requirement (2.1), we
consider the ratio (termed relative efficiency (RE)) Eu{T|P2}/kn where

n = [(30/6*)2 + 1), and ¢ is the solution of

J ok‘l(x+5)d0(x) = P%, (9.1)

-0

Clearly RE depends on p and {8%,P*}; values of RE less than unity favor

P2 over Pl. For mathematical convenience we shall use the continuous

approximations to Eu{T|P2} and n (thereby ignoring the fact that the sample

sizes must be integers). RE is then given by

k
2 2
[}cl + c2 .z

1

© k k
I N o(x+d+§,..c./6%) - N O(x-d+8..c. /86%))do(x) /kc2
1w\ 521 ij1 1 ij’l

j:
J#i J# (9.2)
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where we employ in (9.2) either (c a|P2(UE)) for k=2 or

T o
(31,62,5|P2(UC)) for k 2 3. (In order to compare the performance of P2(UC)
with that of PQ(UE) for k = 2, we also will employ (61,82,&|P2(UC)) for
k = 2. See Table 3.) The value of ¢ in (9.1) has been tabulated for
selected k and P%* by Bechhofer [1954], Gupta [1963], and Milten [1963]

(Bechhofer's A = ¢, Gupta's and Milton's H = ¢/v2.)

Femark 9.1: For the equal means (EM) configuration Mr1g 7 k)’ and for

the u(8*) configuration My T 8% (known to be LF for

Ple-11 7 Mo T
pZ(UB) for k = 2 and for P2(UC) for k 2 2, and conjectured to be

LF for P2(UE) for k > 3), we note that RE depends only on k and P¥
for given P2(-) and u € 9.

Table 3 which concerns P2(U ) and P2(UC) for k = 2, and Table 4

E
3

which concerns PO(UC) for k >

, give computed RE-values for selected P#
and p € 2 to indicate the magnitude of the saving in Eu{TlP} achieved

by the screening property of PZ(UC) (pZ(UE)) when P2(T) is uced in
place of Pl for k 22 (k = 2); the computations for Tables 3 and 4 are

based on (el,éq,d) listed in Tables 1 and 2, respectively.

9.1 Py(U) and Py(U,) vs. P, for k=2

1
% ' $
For all P® we note that RBEKO) is less for P2(UE) than for P2(UC),

but REE!”) is greater for P2(UE) than for P2(UC) (since n, for ﬁ

P2(UB) turns out to Le greater than n, for P2(Uc)). The range of

1
' - % = % $ $
(L[2] u[lJ)/G §/6% values over which R;E(a) is less for PQ(UE)

than for P2(Uc) for given P* appears to depend critically on P%* being

small for P% close to unity and large for P#* + 1/2 (since in this latter
situation P2(UC) - Pl)‘ However, of greatest importance, is the fact that

for either P2(UE) or PQ(UC) used at any P* (1/2 < P* < 1) we have
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Table 4
Efficiency of Pl relative to P (U,) for k 2 3

when the Yrig (1 £ i< k) are in various configurations

l u[k]-y£k_l]=6*, “[i]'“[i—1]=6 (2<i<k~1)
k| B (£M) (tr) |
L[k]=u[13 8/6%=0 16/8%=0.5 a/a*=1.o5/6*:2.oic/5*=u.o MR 1T
0.99 | 0.9328 |0.7184 | 0.6938 | 0.6913 | 0.6912 | 0.6912 | 0.6572 |
. |0.95|0.9624 [0.7965 | 0.7430 | 0.7206 { 0.7148 | 0.7147 | 0.59u3
© 10.90 | 0.9838 10.8887 [ 0.8394 | 0.7990 | 0.7684 | 0.7653 | 0.5606
0.75 [ 0.9999 10.9947 | 0.9899 | 0.9808 | 0.9u62 | 0.8603 | 0.5354
0.99 | 0.9139 0.7020 | 0.6676 | 0.6661 | 0.6660 | 0.6660 | 0.6u24
4 10.95]0.9392 |0.7650 | 0.6832 | 0.6635 | 0.6663 | 0.6663 | 0.5900
0.90 [ 0.9631 [0.8389 | 0.7277 | 0.6955 { 0.6866 | 0.6862 | 0.5549
0.75 [ 0.9967 0.9772 | 0.9380 | 0.8768 | 0.7926 | 0.7511 | 0.5262
0.99 | 0.8954 [0.6866 | 0.6468 | 0.6457 | 0.6157 | 0.6457 | 0.6269
0.95 | 0.9265 !0.7431 | 0.6465 | 0.6361 | 0.6347 | 0.6347 | 0.5759
5 10.90 | 0.9403 {0.8040 | 0.6755 | 0.6493 | 0.6u24 | 0.6422 | 0.5460
0.75 | 0.9888 [0.9473 | 0.8433 | 0.7573 | 0.7014 | 0.6847 | 0.5104
0.60 | 0.9984 [0.9959 | 0.9818 | 0.9360 [0.8211 | 0.7405 [ 0.5225
0.99 | 0.8300 [0.6409 | 0.5916 | 0.5911 |0.5911 | 0.5911 | 0.5811
0.95 | 0.8366 [0.6778 | 0.5698 | 0.5661 | 0.5658 | 0.5658 | 0.5390
10 {0.90 [ 0.8518 [0.7174 [ 0.5695 | 0.5610 {0.5595 | 0.5595 | 0.5179
0.75 | 0.9171 10.8323 | 0.6032 | 0.5740 |0.5624 | 0.5616 | 0.4818
0.60 | 0.9306 [0.9496 | 0.6968 | 0.6278 | 0.5918 | 0.5783 | 0.u4788
0.45 | 0.999% [0.9970 | 0.8879 | 0.7497 | 0.6699 | 0.6281 | 0.5160
0.99 | 0.7920 [0.6178 | 0.5662 | 0.5659 |0.5659 | 0.5659 [ 0.5588
0.95 | 0.7906 [0.6463 |0.5376 | 0.5353 [0.5352 | 0.5352 | 0.5169
15 {0.90 [0.7993 {0.6769 |{0.5296 | 0.5244 | 0.5236 | 0.5236 | 0.4953
0.75 { 0.8504 [0.7653 |0.5423 | 0.5263 |0.5211 | 0.5209 | 0.4639
0.60 | 0.9389 |0.8864 | 0.5820 | 0.5477 |0.5309 | 0.5278 | 0.4558
0.45 | 0.993% [0.9831 | 0.6905 | 0.6195 [0.5826 | 0.5835 | ©0.4940
0.99 | 0.7472 [0.5913 [0.5381 | 0.5379 {0.5379 | 0.5379 | 0.5333
0.95 | 0.7372 |0.6109 | 0.5023 | 0.5009 |0.5008 | 0.5008 | 0.4892
25 0.90 | 0.7388 0.6333 [0.4914 | 0.4885 |0.4881 | 0.4881 | 0.4709
0.75 {0.7683 |0.6954 | 0.4878 | 0.4790 | 0.4766 | 0.4766 | 0.uu49
0.60 | 0.8326 [0.7769 |0.5204 | 0.5042 |0.4980 | 0.4976 | 0.uu97
0.45 | 0.9531 |0.9088 | 0.6306 | 0.5058 |0.5951 | 0.5940 | 0.52u9

i
i
|
i
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l(s) €1 forall wed and RE ()<< 1. Thus both P,(Up) and

P2(UC) are highly* effective as secreening procedures.

9.2 Py(Uy) ws. P, for k23

For given k > 3 the performance of P2(Uc) relative to that of P,
as measured by RE for 1/k < P¥ <1 and p € @ is similar to that noted
for k = 2. In additicn, if we regard RE as a function of k for fixed P#%
and configuration of the My (1 < i< k), specifically for the configurations
u(0); Mrk] T Mrk-1] T 8%, i1 T Mrie1l C 8§ (22 i1ck-1, 028 <w)y

u[y] = u[k-l] = o, our computations indicate that RE is decreasing in k

(although this has not been established analytically). Thus the effectiveness

of ?2(Uc) as a screening procedure appears to be increasing with increasing

k.

10. Directions of future research

The most important unsolved problem associated with P2 is that of

determining the LF-configuration of the My (see (5.7)) for k > 2; as
noted earlier, we conjecture the answer to be the slippage configuration
p(8%). If this conjecture can be shown to be true, it will be necessary to
find efficient algorithms for evaluating Pu(G*){Csle} (as given by (5.6))
numerically before the design constants (3:;82,EIUE) for use with P2(UE)
can be determined.

A two-stage minimax screening procedure, analogous to P2, can be
devised for selecting the smallest (say) normal variance; this was done

in Tamhane [1975b]. However, design constants to implement the procedure

must still be computed.

-~

€
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Procedure ?2 given by (4.1) permanently eliminates populations for

which X1 < ﬁéi% - h. However, P, can be modified in such a way that

populations from which a total of only n, observations are taken, are

i |

eligible for selection as '"best'" along with those from which a total of

ny + n, observations are taken; in this modification we aszert that the

5 < : e (1)
population associated with max{max Xi, max Xi

iel ig1

was considered in Tamhane [19752j; an exact analytical expression for the

} is best. Such a procedure

PCS was derived, and the PCS performance was studied by Monte Carlo sampling
methods. Aside from the analytical and computational difficulties (as well
as the problem of determining the LF-configuration of the ui), procedures

of this type would appear to represent a fruitful direction of generalization.
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requirement using the indifference-zone approach as does the single-stage pro-
cedure of Bechhofer t3954+. The two-stage procedure has the highly desirable

property that the expected total number of observations required by the proce-
dure is always less than the total number of observations required by the

corresponding single-stage procedure, regardless of the configuration of the

population means. The saving in expected total number of observations can be

substantial, particularly when the configuration of the population means is
favorable to the experimenter. The saving is accomplished by screening out
*non-contending“ populations in the first stage, and concentrating sampling
only on ‘contending“ populations in the second stage. The two-stage procedure
can be regarded as a composite one which uses a screening subset-type approach
(Gupta [195671, [1965]) in the first stage, and an indifference-zone approach
{Bechhofer {19547) applied to qll populations retained in the selected subset
in the second stage. Constants to implement the procedure for various k and
P* are provided, as are calculations giving the saving in expected total

sample size if the two-stage procedure is used in place of the corresponding

_single-stage procedure.
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